↳ Prolog
↳ PrologToPiTRSProof
ackermann_in(s(M), s(N), Val) → U2(M, N, Val, ackermann_in(s(M), N, Val1))
ackermann_in(s(M), 0, Val) → U1(M, Val, ackermann_in(M, s(0), Val))
ackermann_in(0, N, s(N)) → ackermann_out(0, N, s(N))
U1(M, Val, ackermann_out(M, s(0), Val)) → ackermann_out(s(M), 0, Val)
U2(M, N, Val, ackermann_out(s(M), N, Val1)) → U3(M, N, Val, ackermann_in(M, Val1, Val))
U3(M, N, Val, ackermann_out(M, Val1, Val)) → ackermann_out(s(M), s(N), Val)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
ackermann_in(s(M), s(N), Val) → U2(M, N, Val, ackermann_in(s(M), N, Val1))
ackermann_in(s(M), 0, Val) → U1(M, Val, ackermann_in(M, s(0), Val))
ackermann_in(0, N, s(N)) → ackermann_out(0, N, s(N))
U1(M, Val, ackermann_out(M, s(0), Val)) → ackermann_out(s(M), 0, Val)
U2(M, N, Val, ackermann_out(s(M), N, Val1)) → U3(M, N, Val, ackermann_in(M, Val1, Val))
U3(M, N, Val, ackermann_out(M, Val1, Val)) → ackermann_out(s(M), s(N), Val)
ACKERMANN_IN(s(M), s(N), Val) → U21(M, N, Val, ackermann_in(s(M), N, Val1))
ACKERMANN_IN(s(M), s(N), Val) → ACKERMANN_IN(s(M), N, Val1)
ACKERMANN_IN(s(M), 0, Val) → U11(M, Val, ackermann_in(M, s(0), Val))
ACKERMANN_IN(s(M), 0, Val) → ACKERMANN_IN(M, s(0), Val)
U21(M, N, Val, ackermann_out(s(M), N, Val1)) → U31(M, N, Val, ackermann_in(M, Val1, Val))
U21(M, N, Val, ackermann_out(s(M), N, Val1)) → ACKERMANN_IN(M, Val1, Val)
ackermann_in(s(M), s(N), Val) → U2(M, N, Val, ackermann_in(s(M), N, Val1))
ackermann_in(s(M), 0, Val) → U1(M, Val, ackermann_in(M, s(0), Val))
ackermann_in(0, N, s(N)) → ackermann_out(0, N, s(N))
U1(M, Val, ackermann_out(M, s(0), Val)) → ackermann_out(s(M), 0, Val)
U2(M, N, Val, ackermann_out(s(M), N, Val1)) → U3(M, N, Val, ackermann_in(M, Val1, Val))
U3(M, N, Val, ackermann_out(M, Val1, Val)) → ackermann_out(s(M), s(N), Val)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
ACKERMANN_IN(s(M), s(N), Val) → U21(M, N, Val, ackermann_in(s(M), N, Val1))
ACKERMANN_IN(s(M), s(N), Val) → ACKERMANN_IN(s(M), N, Val1)
ACKERMANN_IN(s(M), 0, Val) → U11(M, Val, ackermann_in(M, s(0), Val))
ACKERMANN_IN(s(M), 0, Val) → ACKERMANN_IN(M, s(0), Val)
U21(M, N, Val, ackermann_out(s(M), N, Val1)) → U31(M, N, Val, ackermann_in(M, Val1, Val))
U21(M, N, Val, ackermann_out(s(M), N, Val1)) → ACKERMANN_IN(M, Val1, Val)
ackermann_in(s(M), s(N), Val) → U2(M, N, Val, ackermann_in(s(M), N, Val1))
ackermann_in(s(M), 0, Val) → U1(M, Val, ackermann_in(M, s(0), Val))
ackermann_in(0, N, s(N)) → ackermann_out(0, N, s(N))
U1(M, Val, ackermann_out(M, s(0), Val)) → ackermann_out(s(M), 0, Val)
U2(M, N, Val, ackermann_out(s(M), N, Val1)) → U3(M, N, Val, ackermann_in(M, Val1, Val))
U3(M, N, Val, ackermann_out(M, Val1, Val)) → ackermann_out(s(M), s(N), Val)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
ACKERMANN_IN(s(M), s(N), Val) → U21(M, N, Val, ackermann_in(s(M), N, Val1))
ACKERMANN_IN(s(M), s(N), Val) → ACKERMANN_IN(s(M), N, Val1)
U21(M, N, Val, ackermann_out(s(M), N, Val1)) → ACKERMANN_IN(M, Val1, Val)
ACKERMANN_IN(s(M), 0, Val) → ACKERMANN_IN(M, s(0), Val)
ackermann_in(s(M), s(N), Val) → U2(M, N, Val, ackermann_in(s(M), N, Val1))
ackermann_in(s(M), 0, Val) → U1(M, Val, ackermann_in(M, s(0), Val))
ackermann_in(0, N, s(N)) → ackermann_out(0, N, s(N))
U1(M, Val, ackermann_out(M, s(0), Val)) → ackermann_out(s(M), 0, Val)
U2(M, N, Val, ackermann_out(s(M), N, Val1)) → U3(M, N, Val, ackermann_in(M, Val1, Val))
U3(M, N, Val, ackermann_out(M, Val1, Val)) → ackermann_out(s(M), s(N), Val)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
ACKERMANN_IN(s(M), 0) → ACKERMANN_IN(M, s(0))
ACKERMANN_IN(s(M), s(N)) → ACKERMANN_IN(s(M), N)
U21(M, ackermann_out(Val1)) → ACKERMANN_IN(M, Val1)
ACKERMANN_IN(s(M), s(N)) → U21(M, ackermann_in(s(M), N))
ackermann_in(s(M), s(N)) → U2(M, ackermann_in(s(M), N))
ackermann_in(s(M), 0) → U1(ackermann_in(M, s(0)))
ackermann_in(0, N) → ackermann_out(s(N))
U1(ackermann_out(Val)) → ackermann_out(Val)
U2(M, ackermann_out(Val1)) → U3(ackermann_in(M, Val1))
U3(ackermann_out(Val)) → ackermann_out(Val)
ackermann_in(x0, x1)
U1(x0)
U2(x0, x1)
U3(x0)
From the DPs we obtained the following set of size-change graphs: